#include "world.h" #include "game.h" size_t buildWorldBVHLeafs(BVHNode leafs[WORLD_ENTITY_MAX], const World* world) { size_t leafsSize = 0; const Entity* entities = world->entities; bool grouped[WORLD_ENTITY_MAX]; int ungroupedCount = WORLD_ENTITY_MAX; memset(grouped, 0, sizeof(grouped)); while (ungroupedCount > 0) { BVHNode leaf; for (int leafIndex = 0; leafIndex < BVH_MAX; ++leafIndex) { int closest = -1; float closestDistance = world->size.x; // Find closest. for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { if (grouped[index]) { continue; } // First entity. if (leafIndex == 0) { closest = index; break; } float distance = 0.0; BoundingBox overlapBox; overlapBox.min = entities[index].position; overlapBox.max = overlapBox.min; for (int innerIndex = 0; innerIndex < leafIndex; ++innerIndex) { distance += Vector3Distance( entities[leaf.entities[innerIndex]].position, entities[index].position); overlapBox.min = Vector3Min( overlapBox.min, entities[leaf.entities[innerIndex]].box.min); overlapBox.min = Vector3Min( overlapBox.min, entities[index].box.min); overlapBox.max = Vector3Max( overlapBox.max, entities[leaf.entities[innerIndex]].box.max); overlapBox.max = Vector3Max( overlapBox.max, entities[index].box.max); } distance /= (float)leafIndex; bool overlaps = false; // Too big (will count it as a overlap). if (Vector3Distance(overlapBox.min, overlapBox.max) >= BVH_BOX_MAX) { overlaps = true; } // Check if overlap is already happening. for (int nodeIndex = 0; nodeIndex < leafsSize && !overlaps; ++nodeIndex) { if (CheckCollisionBoxes(overlapBox, leafs[nodeIndex].box)) { overlaps = true; break; } } // Update distance. if (!overlaps && distance < closestDistance) { closestDistance = distance; closest = index; } } if (closest == -1) { leaf.entities[leafIndex] = -1; } else { leaf.entities[leafIndex] = closest; grouped[closest] = true; --ungroupedCount; } } // Get bounding box. leaf.box = world->entities[leaf.entities[0]].box; for (int index = 1; index < BVH_MAX; ++index) { if (leaf.entities[index] == -1) { continue; } leaf.box.min = Vector3Min( leaf.box.min, world->entities[leaf.entities[index]].box.min); leaf.box.max = Vector3Max( leaf.box.max, world->entities[leaf.entities[index]].box.max); } leaf.position = Vector3Scale(Vector3Add(leaf.box.min, leaf.box.max), 0.5); memset(leaf.branches, 0, BVH_MAX_BRANCH_COUNT * sizeof(BVHNode*)); leafs[leafsSize] = leaf; ++leafsSize; } #ifdef FT_DEBUG_MODE // Test if everything is grouped. for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { if (!grouped[index]) { printf("Ungrouped: %d\n", index); } } // Test for leaf collision. for (int outer = 0; outer < leafsSize; ++outer) { for (int inner = 0; inner < leafsSize; ++inner) { if (outer != inner && CheckCollisionBoxes(leafs[outer].box, leafs[inner].box)) { printf("Leaf collision: %d and %d\n", outer, inner); } } } printf("leaf count: %ld\n", leafsSize); #endif return leafsSize; } size_t buildWorldBVHSubtree(BVHNode* subtree, const BVHNode* nodes, size_t nodesSize, const World* world) { size_t subtreeSize = 0; bool grouped[nodesSize]; int ungroupedCount = nodesSize; memset(grouped, 0, sizeof(grouped)); while (ungroupedCount > 0) { BVHNode node; memset(&node, 0, sizeof(BVHNode)); for (int branchIndex = 0; branchIndex < BVH_MAX_BRANCH_COUNT; ++branchIndex) { int closest = -1; float closestDistance = Vector3LengthSqr(world->size); // Find closest. for (int index = 0; index < nodesSize; ++index) { if (grouped[index]) { continue; } // First branch. if (branchIndex == 0) { closest = index; break; } float distance = 0.0; BoundingBox overlapBox = nodes[index].box; for (int innerIndex = 0; innerIndex < node.branchCount; ++innerIndex) { distance += Vector3Distance(node.branches[innerIndex]->position, nodes[index].position); overlapBox.min = Vector3Min(overlapBox.min, node.branches[innerIndex]->box.min); overlapBox.min = Vector3Min(overlapBox.min, nodes[index].box.min); overlapBox.max = Vector3Max(overlapBox.max, node.branches[innerIndex]->box.max); overlapBox.max = Vector3Max(overlapBox.max, nodes[index].box.max); } distance /= (float)node.branchCount; bool overlaps = false; // Check for overlap. for (int subtreeIndex = 0; subtreeIndex < subtreeSize; ++subtreeIndex) { if (CheckCollisionBoxes(overlapBox, subtree[subtreeIndex].box)) { overlaps = true; break; } } BoundingBox currentBox = node.branches[0]->box; for (int innerIndex = 1; innerIndex < node.branchCount; ++innerIndex) { currentBox.min = Vector3Min(currentBox.min, node.branches[innerIndex]->box.min); currentBox.max = Vector3Max(currentBox.max, node.branches[innerIndex]->box.max); } // Update distance. if (CheckCollisionBoxes(currentBox, nodes[index].box)) { closestDistance = Vector3Distance( nodes[index].position, Vector3Scale(Vector3Add(currentBox.min, currentBox.max), 0.5)); closest = index; } else if (!overlaps && distance < closestDistance) { closestDistance = distance; closest = index; } } if (closest == -1) { continue; } // Add closest as a branch. node.branches[node.branchCount] = (BVHNode*)FT_MALLOC(sizeof(BVHNode)); if (node.branches[node.branchCount] == NULL) { ALLOCATION_ERROR; break; } memcpy(node.branches[node.branchCount], &nodes[closest], sizeof(BVHNode)); ++node.branchCount; grouped[closest] = true; --ungroupedCount; } // Get bounding box. node.box = node.branches[0]->box; for (int index = 1; index < node.branchCount; ++index) { node.box.min = Vector3Min(node.box.min, node.branches[index]->box.min); node.box.max = Vector3Max(node.box.max, node.branches[index]->box.max); } node.position = Vector3Scale(Vector3Add(node.box.min, node.box.max), 0.5); subtree[subtreeSize] = node; ++subtreeSize; } #ifdef FT_DEBUG_MODE // Test if everything is grouped. for (int index = 0; index < nodesSize; ++index) { if (!grouped[index]) { printf("Ungrouped: %d\n", index); } } // Check for collisions int overlapCount = 0; for (int outer = 0; outer < subtreeSize - 1; ++outer) { for (int inner = outer + 1; inner < subtreeSize; ++inner) { if (CheckCollisionBoxes(subtree[outer].box, subtree[inner].box)) { ++overlapCount; } } } printf("subtree size: %ld, overlap count: %d\n", subtreeSize, overlapCount); #endif return subtreeSize; } void buildWorldBVH(World* world) { Entity* entities = world->entities; // Get leafs. BVHNode tree[WORLD_ENTITY_MAX]; size_t treeSize = buildWorldBVHLeafs(tree, world); while (treeSize > 1) { BVHNode subtree[treeSize]; treeSize = buildWorldBVHSubtree(subtree, tree, treeSize, world); memcpy(tree, subtree, treeSize * sizeof(BVHNode)); } world->bvh = tree[0]; world->bvhDebugSelect = 0; } World createWorld(int seed) { World world; world.size = WORLD_SIZE; // Heightmap image. int offsetX = FT_RANDOM16(seed); int offsetY = FT_RANDOM16(seed); Image image = GenImagePerlinNoise(WORLD_IMAGE_WIDTH, WORLD_IMAGE_HEIGHT, offsetX, offsetY, WORLD_IMAGE_SCALE); // Heightmap. Mesh mesh = GenMeshHeightmap(image, world.size); world.heightmap = LoadModelFromMesh(mesh); world.texture = LoadTextureFromImage(image); world.heightmap.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture = world.texture; UnloadImage(image); // Entities. for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { FT_RANDOM16(seed); Entity entity = createEntity(seed % ENTITY_COUNT, Vector3Zero()); Vector3 position; position.x = FT_RANDOM16(seed) % (int)world.size.x; position.z = FT_RANDOM16(seed) % (int)world.size.z; position.y = getWorldHeightAtLocation(&world, position.x, position.z) + 1.0; setEntityPosition(&entity, position); world.entities[index] = entity; } double currentTime = GetTime(); buildWorldBVH(&world); #ifdef FT_DEBUG_MODE printf("BVH build time: %lf\n", GetTime() - currentTime); #endif return world; } void drawBVHDebug(BVHNode bvh, int level, int selected) { Color colors[] = {RED, GREEN, BLUE, ORANGE, YELLOW, PINK}; int colorSize = 6; if (level == selected) { DrawBoundingBox(bvh.box, colors[level % colorSize]); return; } for (int index = 0; index < bvh.branchCount; ++index) { drawBVHDebug(*bvh.branches[index], level + 1, selected); } } void updateWorld(World* world, Game* game) { DrawModel(world->heightmap, Vector3Zero(), 1.0, WHITE); for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { updateEntity(&world->entities[index], game); } // Draw BVH leafs. #ifdef FT_DEBUG_MODE if (IsKeyPressed(KEY_RIGHT)) { ++world->bvhDebugSelect; } if (IsKeyPressed(KEY_LEFT)) { --world->bvhDebugSelect; } drawBVHDebug(world->bvh, 0, world->bvhDebugSelect); #endif } void freeWorldBVH(BVHNode bvh) { // Play it safe to prevent memory leaks. for (int index = 0; index < BVH_MAX_BRANCH_COUNT; ++index) { if (bvh.branches[index] != NULL) { freeWorldBVH(*bvh.branches[index]); FT_FREE(bvh.branches[index]); } } } void freeWorld(World world) { UnloadTexture(world.texture); UnloadModel(world.heightmap); freeWorldBVH(world.bvh); } float getWorldHeightAtLocation(const World* world, float x, float y) { float mapX = (float)world->texture.width / world->size.x * x; float mapY = (float)world->texture.height / world->size.z * y; RayCollision result; for (int yOffset = -1; yOffset < 2; ++yOffset) { for (int xOffset = -1; xOffset < 2; ++xOffset) { int pixelX = mapX + xOffset; int pixelY = mapY + yOffset; if (pixelX < 0 || pixelX >= world->texture.width || pixelY < 0 || pixelY >= world->texture.height) { continue; } int verticeStart = (pixelY * (world->texture.width - 1) + pixelX) * 18; float* vertices = &world->heightmap.meshes[0].vertices[verticeStart]; // Cast to triangles at pixel. Really hacky indeed. Ray ray = (Ray){ .position = (Vector3){x, world->size.y * 2.0, y}, .direction = (Vector3){0.0, -1.0, 0.0} }; result = GetRayCollisionTriangle( ray, (Vector3){vertices[0], vertices[1], vertices[2]}, (Vector3){vertices[3], vertices[4], vertices[5]}, (Vector3){vertices[6], vertices[7], vertices[8]}); // Test other triangle. if (!result.hit) { result = GetRayCollisionTriangle( ray, (Vector3){vertices[9], vertices[10], vertices[11]}, (Vector3){vertices[12], vertices[13], vertices[14]}, (Vector3){vertices[15], vertices[16], vertices[17]}); } if (result.hit) { return result.point.y; } } } return 0.0; } WorldUID castRayAtWorld(const World* world, Ray ray) { WorldUID uid = -1; return uid; } // Abortions are good. Get more abortions.