#include "world.h" #include "game.h" float hashWorldPosition(Vector3 position, Vector3 size) { return (position.z * size.y) + (position.y * size.x) + position.x; } void sortEntitiesUID(WorldUID entities[WORLD_ENTITY_MAX], const World* world) { // Lazy selection sort. for (int outer = 0; outer < WORLD_ENTITY_MAX - 1; ++outer) { int minIndex = outer; for (int inner = outer + 1; inner < WORLD_ENTITY_MAX; ++inner) { float entityHash = hashWorldPosition( world->entities[entities[inner]].position, world->size); float minHash = hashWorldPosition( world->entities[entities[minIndex]].position, world->size); if (entityHash < minHash) { minIndex = inner; } } WorldUID temp = entities[outer]; entities[outer] = entities[minIndex]; entities[minIndex] = temp; } } // Bottom up method because bottom up better. Just if politicians agreed ): void buildWorldBVH(World* world) { Entity* entities = world->entities; bool grouped[WORLD_ENTITY_MAX]; // This is a mess thats not going to work. for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { grouped[index] = false; } int nodeCount = 0; for (int nodeIndex = 0; nodeIndex < WORLD_ENTITY_MAX; ++nodeIndex) { if (grouped[nodeIndex]) { continue; } BVHNode leaf; leaf.branch1 = NULL; leaf.branch2 = NULL; leaf.entities[0] = nodeIndex; grouped[nodeIndex] = true; int leafIndex = 0; for (int outer = 0; outer < WORLD_ENTITY_MAX; ++outer) { if (grouped[outer]) { continue; } int closest = outer; float closestDistance = Vector3Distance( entities[closest].position, entities[nodeIndex].position); for (int inner = 0; inner < WORLD_ENTITY_MAX; ++inner) { if (grouped[inner]) { continue; } float distance = Vector3Distance( entities[inner].position, entities[nodeIndex].position); if (distance < closestDistance) { closest = inner; closestDistance = distance; } } leaf.entities[leafIndex] = closest; grouped[closest] = true; ++leafIndex; if (leafIndex >= BVH_MAX) { break; } } // Create bounding box. leaf.box.min = entities[leaf.entities[0]].position; leaf.box.max = entities[leaf.entities[0]].position; for (int index = 1; index < BVH_MAX; ++index) { leaf.box.min = Vector3Min(leaf.box.min, entities[leaf.entities[index]].position); leaf.box.max = Vector3Max(leaf.box.max, entities[leaf.entities[index]].position); } world->bvhTest[nodeCount] = leaf; ++nodeCount; if (nodeCount >= 250) { break; } } // test for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { if (!grouped[index]) { printf("%d\n", index); } } } World createWorld(int seed) { World world; world.size = WORLD_SIZE; // Heightmap image. int offsetX = FT_RANDOM16(seed); int offsetY = FT_RANDOM16(seed); Image image = GenImagePerlinNoise(WORLD_IMAGE_WIDTH, WORLD_IMAGE_HEIGHT, offsetX, offsetY, WORLD_IMAGE_SCALE); // Heightmap. Mesh mesh = GenMeshHeightmap(image, world.size); world.heightmap = LoadModelFromMesh(mesh); world.texture = LoadTextureFromImage(image); world.heightmap.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture = world.texture; UnloadImage(image); // Entities. for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { FT_RANDOM16(seed); Entity entity = createEntity(seed % ENTITY_COUNT, Vector3Zero()); entity.position.x = FT_RANDOM16(seed) % (int)world.size.x; entity.position.z = FT_RANDOM16(seed) % (int)world.size.z; entity.position.y = getWorldHeightAtLocation(world, entity.position.x, entity.position.z) + 1.0; world.entities[index] = entity; } buildWorldBVH(&world); return world; } void updateWorld(World* world, Game* game) { DrawModel(world->heightmap, Vector3Zero(), 1.0, WHITE); for (int index = 0; index < WORLD_ENTITY_MAX; ++index) { updateEntity(&world->entities[index], game); } for (int index = 0; index < 250; ++index) { Color colors[] = {RED, GREEN, BLUE, ORANGE, YELLOW, PINK}; DrawBoundingBox(world->bvhTest[index].box, colors[index % 6]); } } void freeWorld(World world) { UnloadTexture(world.texture); UnloadModel(world.heightmap); } float getWorldHeightAtLocation(World world, float x, float y) { float toMapX = (float)world.texture.width / world.size.x; float toMapY = (float)world.texture.height / world.size.z; int pixelX = x * toMapX; int pixelY = y * toMapY; int verticeStart = (pixelY * (world.texture.width - 1) + pixelX) * 18; float* vertices = &world.heightmap.meshes[0].vertices[verticeStart]; // Clamp x and y to prevent ray being out of bounds. Vector2 min = (Vector2){vertices[0], vertices[2]}; Vector2 max = (Vector2){vertices[0], vertices[2]}; for (int index = 0; index < 18; index += 3) { Vector2 vertex = (Vector2){vertices[index], vertices[index + 2]}; min = Vector2Min(min, vertex); max = Vector2Max(max, vertex); } // Cast to triangles at pixel. Really hacky indeed. Ray ray = (Ray){ .position = (Vector3){ Clamp(x, min.x, max.x), FLT_MAX_EXP, Clamp(y, min.y, max.y)}, .direction = (Vector3){0.0, -1.0, 0.0} }; RayCollision result = GetRayCollisionTriangle( ray, (Vector3){vertices[0], vertices[1], vertices[2]}, (Vector3){vertices[3], vertices[4], vertices[5]}, (Vector3){vertices[6], vertices[7], vertices[8]}); // Test other triangle. if (!result.hit) { result = GetRayCollisionTriangle( ray, (Vector3){vertices[9], vertices[10], vertices[11]}, (Vector3){vertices[12], vertices[13], vertices[14]}, (Vector3){vertices[15], vertices[16], vertices[17]}); } if (result.hit) { return result.point.y; } else // Fall back. { float height = 0.0; for (int index = 1; index < 18; index += 3) { height += vertices[index]; } return height / 6.0; } } // Abortions are good. Get more abortions.